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We calculate potential-energy surfaces as functions of spheroidal (e2), hexadecapole
(€4), and axial-asymmetry () shape coordinates for 7206 nuclei from A = 31 to
A = 290. We tabulate the deformations and energies of all minima deeper than 0.2
MeV and of the saddles between all pairs of minima. The tabulation is terminated
at N = 160. Our study is based on the FRLDM macroscopic-microscopic model
defined in ATomMIC DATA AND NUCLEAR DATA TABLES [59, 185 (1995)]. We also
present potential-energy contour plots versus €s and v for 1224 even-even nuclei in
the region studied. We can identify nuclei for which a necessary condition for shape
isomers occurs, namely multiple minima in the calculated potential-energy surface.
We find that the vast majority of nuclear shape isomers occur in the A = 80 region,
the A = 100 region, and in a more extended region centered around 2°®Pb. A cal-
culated region of shape isomers that has so far not been extensively explored is the
region of neutron-deficient actinides “north-east” of 2°8Pb.
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1 INTRODUCTION

In a previous issue of AToOMIC DATA AND NUCLEAR DATA TABLES we presented a calculation
of nuclear ground-state masses and deformations for 8979 nuclei ranging from 90O to 33136 and
extending from the proton drip line to the neutron drip line [1]. The calculation was based on
the macroscopic-microscopic approach. The microscopic corrections were obtained from single-
particle levels calculated in a folded-Yukawa single-particle potential [2] by use of the Strutinsky
method [3, 4]. Residual pairing corrections were calculated in the Lipkin-Nogami approximation
[5, 6, 7, 8. Two 1992 mass tables were provided, both with this microscopic correction, but with
the macroscopic contribution to the total potential energy obtained in two different liquid-drop-
type models, namely the finite-range droplet model, and the finite-range liquid-drop model. We
refer to the macroscopic-microscopic model in which the total potential energy is calculated as a
sum of microscopic corrections from folded-Yukawa single-particle levels and a macroscopic energy
term from the finite-range droplet model as FRDM(1992). The year in parentheses refers to the
year the constants of the macroscopic model were determined and frozen. The potential-energy
model in which the macroscopic term is given by the finite-range liquid-drop model is referred
to as FRLDM(1992). For the current work we use a slightly modified macroscopic model whose
parameters were fixed by a more careful consideration of fission-barrier heights in addition to nuclear
masses [9]. This model is labeled FRLDM(2002).

For many nuclei the potential energy versus shape has one or more additional minima over and
above the ground-state minimum. In our mass paper [1] only properties of the ground-state minima
were tabulated. Here we study the additional minima that sometimes exist. When one of these
additional minima is sufficiently deep, then the nucleus may exist in a state corresponding to the
energy and shape of this minimum; this state is a shape isomer. The lifetime of the shape isomer
will depend on the overlap between the nuclear wave functions of the shape isomer and the ground
state, the excitation energy of the shape isomer, and the height of the saddle separating the shape
isomer and the ground state. Therefore the presence of multiple minima in calculated potential-
energy surfaces can be considered a necessary condition for shape isomerism. The scope of this
paper is limited to providing a tabulation of calculated nuclear shape coordinates corresponding to
all shape-isomeric minima and the energy of these minima. We also provide these properties for
the saddles between all pairs of minima. The calculation includes all nuclei between the proton
and neutron drip lines from A = 31 to A = 290, 7206 nuclei in all. Potential-energy-surface models
that are the basis for calculating these properties are more global and on a firmer footing than
are the models that use the calculated potential-energy surfaces as starting points for estimating
isomer half-lives. The half-life models usually contain locally adjusted constants. However, it is
our expectation that the characterization of the static properties of the shape isomers obtained
from our global, unified, universal, and well-tested model will provide an improved starting point
for estimating where shape isomers and their half-lives can be observed experimentally.

We restrict our study here to “ground-state-like” shape isomers, that is we exclude fission iso-
mers. We therefore only consider shapes with spheroidal deformation e < 0.45. Furthermore we
do not investigate configurations corresponding to rotational, vibrational or single-particle excita-
tions. Energy surfaces calculated at higher angular momentum, which include such excitations,
may have additional shape-coexisting energy minima, or sometimes fewer. They appear in different
nuclei and at different shapes than those presented in this paper. To determine the occurrence
of additional minima of the type we consider here, we calculate nuclear potential-energy surfaces
versus spheroidal deformations €s, axial asymmetry -, and hexadecapole deformations e4. Details
are given in the next section.
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2 CALCULATIONAL DETAILS

For historical reasons and for compatibility with previous calculations we use the Nilsson perturbed-
spheroid € shape parameterization. Since its complete specification, including axial asymmetry is
quite lengthy and is given in our mass paper [1] we do not repeat it here. Axial asymmetry was
not implemented in the computer codes at the time of our mass paper, but this has now been
accomplished. A couple of misprints relating to axial asymmetry that occur in equations in Ref. [1]
(but which have not migrated to any calculations) are enumerated and corrected in Ref. [10]. We
have earlier presented some highlights of the full results we tabulate and display here. In Ref. [10]
we discussed reflection and axial asymmetry of the nuclear ground state which only affect relatively
limited and localized regions of the nuclear chart. A brief summary of our full results on shape
isomers is in Ref. [11]. These two papers are based on the identical potential-energy surfaces we
present here and full details of the calculations can be found there [10, 11]; therefore we just
summarize a few major points of the calculations here.

The potential-energy surfaces are calculated in a three-dimensional deformation space with
g9 = (0.0,0.025,...,0.45), v = (0.0,2.5,...,60.0), and ¢4 = (—0.12,—0.10,...,0.12), altogether
6175 grid points. The results of our shape-isomer calculations up to N = 160 are given in the
TABLE. Furthermore, we show calculated potential energies for 1224 nuclei as GRAPHS 11-112.
These GRAPHS include almost all even-even nuclei in the region studied. Individual, page-size
GRAPHS of each of the 7206 nuclei studied are available for download from our web site [12].

From the calculated three-dimensional potential-energy surfaces we generate 7206 two-dimen-
sional contour plots. The contour maps have been constructed in the following way. At each point
€2 and vy we display the lowest energy obtained for the 13 €4 grid points calculated. We have
previously strongly emphasized and again discuss below that such a procedure in general does not
give reasonable results in, for example, situations where the surface contains multiple local minima
versus €4 and in some other situations [13, 9, 14]. However, we use the method for the purpose
of overview illustration only. All our specific results on minima and separating saddle points are
obtained from a complete and appropriate immersion analysis [15, 16, 13, 14] of the full 3D space.
These data are used by the plotting program which inserts the location of the minima and saddle
points in the contour plots. The minima in the plots are shown as dots and the saddle points as X
symbols. We show the contour plots corresponding to most even-even nuclei in GRAPHS 11-112.
Only a few nuclei very close to the neutron drip line have been omitted. From the appearance
of the surfaces and from our analysis of the full 3D space we conclude that the approximate 2D
surfaces provide a good representation of the structure of the full 3D space. However, it is the
exact structure of the full 3D space that is presented in the TABLE.

In our calculations we use the same set of single-particle levels to calculate the shell-plus-
pairing corrections for several nearby nuclei. We take one additional step to enhance accuracy after
the minima and separating saddle points have been determined. The deformations of all these
stationary points are used to recalculate the energies at these deformations for the specific nucleus
under consideration. Some quantities that depend on Z and N are the single-particle potential radii
and depths, the strength of the spin-orbit force and the pairing strength which are all smoothly and
slowly varying functions of Z and N. Thus, in the recalculation these quantities assume exactly
their proper values for this nucleus and the shell-plus-pairing corrections are calculated from the
precise levels obtained. This strategy is based on the assumption that the locations of minima
or saddles are less sensitive to parameter variations than the energy itself. We have performed
numerous checks of this assumption and it is fulfilled to a very high degree. We used the same
procedure to calculate our mass table [1]. Once we have recalculated the energies we generate a
table of saddle points and minima identical in form to the original approximate table, except for
the values of the energies of the minima and saddle points. In a few pathological cases where the
original minimum was very shallow its recalculated energy may be higher than the saddle that was
originally found to stabilize the minimum, that is the minimum does not exist when the precise
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parameters for the nucleus under study are used. We scan the table for such occurrences and
eliminate those and generate a slightly smaller table. Finally we use this table as a starting point
and generate new tables that meet minimum-depth criteria for the minima that are included. We
generate three such tables with minimum depth criteria of 0.05 MeV, 0.2 MeV, and 0.5 MeV. It is
the saddle-point energies and energy of minima corresponding to the minimum-depth criterion of
0.2 MeV that are tabulated in the TABLE. There can therefore be some (usually small) differences
between the energies of the contour plots and the energy values in the TABLE. Furthermore, in
the contour plots we mark minima that are deeper than 0.05 MeV, and their corresponding saddle
points. Therefore there may be more minima indicated in the contour GRAPHS 11-112 than are
actually tabulated. The absolute energy values in the TABLE and GRAPHS 11-112 can sometimes
differ by a few hundred keV, but the relative energy differences between minima and saddle points
are much less affected. Because we used the identical procedure to calculate our mass table this
approach is necessary and desirable to assure seamless matching between our results here and the
corresponding mass table. There may be some small differences between the calculated potential-
energy surfaces shown here and those published earlier. These occur because the heavier nuclei
require more grid points in the numerical integrations of the matrix elements due to the larger
number of nodes in the wave functions. In the calculation here we have recalculated all potential-
energy surfaces with the larger number of integration points, which may lead to some insignificant
differences between the current contour maps and those few published earlier for lighter nuclei.

We emphasize again that although we use minimization to reduce our 3-dimensional potential-
energy surfaces to two-dimensional, we do it for the sole purpose of plotting contour diagrams for
approximate illustration of the structure of the potential-energy surfaces. Actual numbers presented
in this article, including those given in the TABLE are determined from considering the full 3D
space. The saddle points between minima have been determined by immersion in this full 3D space
[11].

3 RESULTS OVERVIEW

In GRAPH 1 we show four calculated contour maps that illustrate typical features of nuclear
potential-energy surfaces, features that vary considerably from nucleus to nucleus. We discuss the
surfaces in the clockwise order they are numbered.

A very typical situation is illustrated by ®*Sm. There exists only one minimum, the prolate
ground state at €9 = 0.25 and v = 0.0 with energy £ = 0.021 MeV. If axially asymmetric shapes
had not been considered, we would only have known the energy along the upper (y = 60°, oblate
shapes) and lower (y = 0°, prolate shapes) lines and incorrectly concluded that an oblate minimum
at €9 = 0.225 and v = 60° and with &£ = 4.5 MeV also existed, separated from the prolate minimum
by a maximum with energy F£ = 8.2 MeV at spherical shape.

However, for other nuclei separate oblate and prolate minima may exist simultaneously, so-
called oblate-prolate shape isomerism. This is illustrated by the ?®Sr potential-energy surface in
the second subplot of GRAPH 1. Here one oblate and one prolate minimum are present. The
prolate minimum at e5 = 0.325 and v = 0.0° is the deeper minimum with E = 2.225 MeV and
is consequently the ground state. A higher minimum, by topographical necessity separated from
the lower minimum by a saddle, is located at e = 0.300 and v = 60.0 with E = 4.205 MeV. The
axially-asymmetric saddle is located at eo = 0.275 and v = 40.0° with £ = 4.738 MeV.

Triple shape coexistence or isomerism is also possible. An experimental observation in ¥Pb of
this type of shape isomerism and a corresponding calculated potential-energy surface were published
in 2000 [17]. Our calculated potential-energy surface for ¥SPb is very similar to the calculations
presented in [17] with a spherical ground state and shallow minima for deformed prolate and oblate
shapes. However, as is seen in GRAPH 74 our potential energy for '%Pb exhibits five minima,
some of them quite shallow. We show in the third subplot of GRAPH 1 a calculated surface for
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OKr which exhibits a somewhat different type of triple shape coexistence. Here the ground state at
€2 = 0.325 and v = 60.0° with E = 3.476 is oblate. Two shape-isomeric minima are also obtained.
The one located at e2 = 0.200 and v = 0.0° with an energy E' = 4.143 MeV corresponds to a prolate
nuclear shape, whereas at the third, slightly higher minimum at €, = 0.375 and v = 20.0° with
E = 4.185 MeV the nucleus is triaxial in shape. Three saddle points also exist and are indicated
by crossed lines.

For some nuclei we find that the ground state is axially asymmetric. A typical result, for *¥Sm,
is shown in the fourth subplot of GRAPH 1. There is only one minimum in this surface but if the
calculations had been restricted to axially symmetric shapes, one oblate and one prolate minimum
would have been found. Neither of these energy minima survive when axial-asymmetric shapes are
considered. Both turn out to be saddle points if the plot is reflected to angles outside the range
0 <5 < 60. The true minimum is found in the interior of the (e,v) plane. In contrast to the
previous three cases, the calculated ground-state mass for 138Sm is lowered due to the inclusion
of triaxial shapes, by about 0.4 MeV. We have previously shown that the agreement between
calculated and measured masses is improved when axial asymmetry is taken into account in the
calculations [18].

The symmetry properties of the nuclear ground-state shape are perhaps most clearly and sim-
ply revealed through characteristics of low-lying collective energy-level spectra. Collective spectra
are energy levels that arise due to excitation or motion of the whole nucleus in a coordinated
and coherent fashion, in contrast to excitations of individual protons or neutrons into higher single-
particle-type energy levels. Typical collective excitations are vibrations and rotations of the nucleus.
In GRAPH 2 we show experimental collective level spectra [19] for four nuclei, representing typical
classes of nuclear shapes; a sphere and three types of shapes that break spherical symmetry, namely
spheroidal, reflection-asymmetric, and axially-asymmetric (triaxial) shapes. Next to the level spec-
tra we show for these specific nuclei calculated ground-state shapes. The characteristic appearance
of these spectra can be understood from quantum mechanics, as implemented through the collective
model of Bohr and Mottelson[20, 21]. The Pauli principle and the requirement that the nuclear
wave function is anti-symmetric have the consequence that only levels with certain spins (different
in the four situations) appear. Some key characteristics are that (a) the spherical spectrum is
vibrational with an expected energy ratio between the second and first excited level, E(41)/E(27),
close to 2, and (b) the spheroidal spectrum is rotational with an energy ratio E(47)/E(2%) close
to [4(4 + 1)]/[2(2 + 1)] = 10/3 = 3.33. Furthermore, the laws of quantum mechanics have the
consequence that spherical nuclei cannot rotate and spheroidal nuclei can only rotate around an
axis perpendicular to the symmetry axis. When reflection symmetry is broken additional, low-lying
negative-parity states appear and when axial symmetry is broken v bands with the characteristics
shown in GRAPH 2 will appear. In GRAPH 2 the spheroidal spectrum corresponds to an energy
surface similar to subplot (1) in GRAPH 1; the axially asymmetric spectrum corresponds to a
structure similar to subplot (4).

Shape isomers are not necessarily associated with some characteristic symmetry breaking, except
spheroidal deviations from a spherical shape. But for even-even nuclei with calculated low-lying
shape isomers one expects to experimentally observe low-lying 07 energy levels corresponding to
the energies of the shape-isomer minima. The most common expression of shape isomerism (in
even-even nuclei) is that there is one 07 ground state and one additional, low-lying 0T state. This
situation is thought to correspond in a nucleus to two different shape configurations, corresponding
to the distinct minima in calculated potential-energy surfaces. In GRAPH 3 we show a few low-
lying levels in each of four even-even Kr isotopes and the shapes corresponding to the two minima
present in our calculated potential-energy surfaces. We showed in [11] that the energy, relative to
the ground state, of the higher of the two calculated minima compares very well to the excitation
energy of the second 07 level seen in the experimental spectra. As we pointed out in [11], this is a
zero-order model; to more accurately calculate the energy levels one needs to go beyond mean field
and account for mixing between wave functions corresponding to the two shape configurations.
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Rather elaborate calculations implementing such features have been presented, for example in
[22, 23, 24, 25, 26, 27, 28, 29]. These efforts mostly utilize purely microscopic models based on
two-body effective interactions or density-functional theories. Unfortunately, as of yet such models
obtain root-mean-square deviations with respect to experimental masses that are four or more times
larger than those resulting from our model. Until this situation improves, approaches such as the
one we use should be more reliable for global predictions of the sort we present.

How many nuclei of the almost 9000 represented in our mass table have additional minima in
the potential-energy surface, in addition to the ground-state minimum? Because we here focus on
ground-state-like minima we only consider deformations with e < 0.45. The number of minima
that are present in the calculated potential-energy surface of a given nucleus depends on the criteria
we select to permit the minimum to be counted as a candidate for a shape-coexisting minimum.
In GRAPH 4 we use rather generous criteria. We count all minima that are deeper than 0.05 MeV
and at an energy less than 5.0 MeV. By depth 0.05 MeV we mean that the minimum is surrounded
by ridges on which all points lie at least 0.05 MeV above the bottom of the minimum. With the
above criteria shape isomerism is fairly common. However, for calculated shape-isomeric minima
to actually manifest themselves as observable, low-lying 0" states the criteria need to be stricter.
In GRAPHS 5 and 6 we have used stricter criteria, namely excitation energy 2.0 MeV and depth
0.2 MeV and excitation energy 1.0 MeV and depth 0.2 MeV, respectively. In this case candidates
for shape isomerism are mainly restricted to 4 localized regions: A ~ 80 nuclei, A =~ 100 nuclei,
neutron-deficient Pb nuclei, and neutron-deficient actinide nuclei. In addition some nuclei near the
N =~ 120 line may be reachable in experiments. We can impose additional criteria on which shape
isomers we select. In GRAPHS 7 and 8 we show the number of minima with at least one minimum
spherical for excitation energies less than 2 MeV and 1 MeV respectively. In GRAPHS 9 and 10
we require that at least one minimum is triaxial.

In GRAPHS 11-112 we present 1224 contour diagrams of most even-even nuclei between the
proton and neutron drip lines, from 32Ne to 22118. Here more details about the structure of the
potential-energy surfaces and their shape-isomeric minima are visible. It is interesting to study the
transitions from magic, spherical nuclei to well-deformed nuclei through a succession of neutron
numbers. Finally, we have in the TABLE tabulated the energy and deformations of all minima
deeper than 0.2 MeV and the energies and deformations of the optimum saddle points between all
pairs of minima.
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EXPLANATION OF GRAPHS

GRAPH 1: Four calculated potential-energy surfaces versus €2 and v (minimized with respect to
£4). Minima are indicated by colored round dots and saddle points by pairs of crossed lines.
The numbers on a blue background give the energy in MeV of the thicker contour lines which
are spaced 1 MeV apart; the spacing between the thinner lines is 0.2 MeV. The circular arcs
starting at eo = 0.10, 0.20, 0.30, and 0.40 and the straight lines ending at e; = 0.45 and
v = 20 and 40 indicate the coordinate grid. To obtain a suitable range of energy values we
have, following standard practice, subtracted the energy obtained for a spherical shape in the
macroscopic part of the model. The surfaces exhibit typical structures that we obtain in our
current investigation. Each point in a surface corresponds to the energy of a specific nuclear
shape. The lower left tip of the pie-like plot corresponds to a spherical shape. Points along
the v = 60° straight line correspond to oblate shapes (like a discus) and those along the lower
~ = 0° straight line to prolate shapes (like an American football). The energy values in the
interior of the pie are calculated for axially-asymmetric nuclear shapes (a somewhat simplified
analogy is that these points correspond to shapes that result from standing on a football).
Shapes corresponding to the three minima and one of the saddle points of "YKr are shown at
the top in the colors of the symbols at their respective locations in the contour plot. Shapes at
equivalent locations in the other plots are similar, but not identical, due to possible differences
in the g4 shape coordinate. The axially asymmetric minimum in subplot (3), indicated by a
red dot can communicate with the prolate minimum indicated by a green-colored dot across
the saddle indicated by short, crossed, gray lines at €2 = 0.3 and v = 0.0. However, our
water-flow analysis program has identified the saddle points indicated by the larger crossed-
lines symbols as defining a path between the two minima with a lower maximum energy than
the more direct path. For this particular nucleus we can see from the plot that the energy
maxima on these two paths only differ by a few tens of keV at most. It is an interesting
conjecture, that we at this point are not able to prove generally, that the number of saddle
points needed to define optimal paths between n minima is n — 1, not n x (n — 1)/2.

GRAPH 2: Typical collective level spectra for a spherical nucleus and for three nuclei with shapes
representing the most important types of deviation from spherical symmetry. Each level is
labeled by its energy in keV relative to the ground state and its spin and parity. Nuclear
ground-state shapes calculated in the macroscopic-microscopic approach both in Ref. [1] and
here are shown next to the level spectra (from Ref. [19]). The observed level spectra are
consistent with what is expected from the calculated shape asymmetries. Each shape is
shown from two viewing angles; one viewing angle is identical for all four shapes, the other
is chosen to most clearly display the asymmetry of the shape. In subplots (3) and (4) the
levels specifically associated with the broken symmetry have for clarity been shifted towards
the right.



P. Mdller, A. J. Sierk, R. Bengtsson, H. Sagawa, and T. Ichikawa/Nuclear Shape Isomers

GRAPH 3: Observed low-lying energy levels in four Kr isotopes. In each of these even-even
nuclei two low-lying 0% states are observed. For "?Kr the ground-state shape is oblate; for
the other three isotopes it is prolate, whereas it is the shape-isomeric state that is oblate. The
figure is based on information in Ref. [30] and references quoted therein. For a more detailed
discussion see [11]. In each subplot we show the calculated shape corresponding to the oblate
minimum (on the left) and the prolate minimum (to the right).

GRAPH 4: Number of minima deeper than 0.05 MeV and excitation energy less than 5.0 MeV
for 5900 nuclei from A = 31 to N = 160.

GRAPH 5: Number of minima deeper than 0.2 MeV and excitation energy less than 2.0 MeV for
5900 nuclei from A = 31 to N = 160.

GRAPH 6: Number of minima deeper than 0.2 MeV and excitation energy less than 1.0 MeV for
5900 nuclei from A = 31 to N = 160.

GRAPH 7: Number of minima deeper than 0.2 MeV and excitation energy less than 2.0 MeV for
5900 nuclei from A = 31 to N = 160, with at least one minimum corresponding to a spherical
shape.

GRAPH 8: Number of minima deeper than 0.2 MeV and excitation energy less than 1.0 MeV for
5900 nuclei from A = 31 to N = 160, with at least one minimum corresponding to a spherical
shape.

GRAPH 9: Number of minima deeper than 0.2 MeV and excitation energy less than 2.0 MeV for
5900 nuclei from A = 31 to N = 160, with at least one minimum corresponding to a triaxial
shape.

GRAPH 10: Number of minima deeper than 0.2 MeV and excitation energy less than 1.0 MeV
for 5900 nuclei from A = 31 to N = 160, with at least one minimum corresponding to a
triaxial shape.

GRAPHS 11-122: Calculated potential-energy surfaces for 1224 even-even nuclei from A = 32
to A = 290 from the proton drip line to close to the neutron drip line. The contour maps are
grouped together 12 on each page. Every fifth contour line is marked with the energy relative
to the spherical macroscopic energy.
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